Synthesis of (*Z*)-1,2-Dihalo-1-alkenes by the Reaction of (*Z*)-(β -Halovinyl)phenyliodonium Salts with n-Bu4NX or KX/CuX. Competitions between Nucleophilic Vinylic Substitutions and Aromatic Substitutions 1)

Masahito OCHIAI,* Kunio OSHIMA,† and Yukio MASAKI†
Faculty of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770
†Gifu Pharmaceutical University, 5-6-1 Mitahora Higashi, Gifu 502

Nucleophilic vinylic substitutions of (Z)- $(\beta$ -halovinyl)phenyliodonium salts with tetrabutylammonium halides proceed in a stereoselective manner with retention of configuration yielding vicinal (Z)-vinyl dihalides. This reaction competes with nucleophilic aromatic substitutions. Similar competition was observed in the reactions with potassium halides/cuprous halides.

Vicinal dihaloalkenes are usually prepared by the addition reaction of halogens and interhalogens to alkynes.²⁾ This reaction gives (E)-1,2-dihalo-1-alkenes predominantly. The method for stereo- and regioselective synthesis of (Z)-1,2-dihalo-1-alkenes, however, are very limited.³⁾ We report herein nucleophilic vinylic substitutions of (Z)- $(\beta$ -halovinyl)phenyliodonium salts 1 with halides, which provide an efficient route for the stereo- and regioselective synthesis of vicinal (Z)-vinyl dihalides. This reaction competes with nucleophilic aromatic substitutions.

Because of a superleaving ability of a phenyliodonio group, vinyl(phenyl)iodonium salts serve as the highly activated species of alkenyl halides toward the substitution reactions with a variety of nucleophiles. A) Nucleophilic vinylic substitutions of (E)-(β -alkylvinyl)phenyliodonium tetrafluoroborates with n-Bu4NX (Cl, Br, and I) at room temperature proceed with exclusive inversion of configuration yielding alkenyl halides of (Z) stereochemistry. Substitutions of (Z)-(β -(phenylsulfonyl)vinyl)phenyliodonium tetrafluoroborates, however, lead to exclusive retention of configuration. Vinylic $S_N 2$ type mechanism for the inversion of configuration and addition-elimination mechanism for the retention of configuration were proposed. S,6) Both the reactions are highly chemoselective in the sense that halide anions attack the α -vinylic carbons and not the ipso-aromatic carbons, while the ipso aromatic substitutions of diaryliodonium salts with halides have been well established. The substitutions of diaryliodonium salts with halides have been well established.

Reaction of (E)- $(\beta$ -alkylvinyl)- and (Z)- $(\beta$ -(phenylsulfonyl)vinyl)phenyliodonium salts with n-Bu4NX proceeds smoothly at room temperature. (5,6) Introduction of halogens at (β) -olefinic carbons of vinyliodonium

				Reaction	Product (yield) ^{b)}				
Entry 1		X	Solvent	time	2	3	4	5	
1	1a	Cl	CH3CN	4 h	2a(X=Cl, 91%)	3a(9%) ^{c)}	4(82%)	5b (10%)	
			_		$(91:9)^{d}$		$(89:11)^{e}$		
2	1a	Br	CH ₃ CN	3 h	$2a(X=Br, 94\%)^{(c)}$	3a(6%)	•	5a(9%)	
			2		$(94:6)^{d}$		$(91:9)^{e}$		
3	1a	Ι	CH ₃ CN	10 min	V	3a(88%)	4 (94%)		
4	1 b	Cl	CH ₃ CN	8 h	2b (X=Cl, 81%)	3b (19%)	4(80%)	5b (15%)	
					$(81:19)^{d}$		$(84:16)^{e}$		
5	1b	Cl	hexane	2 d	2b(X=Cl, 80%)			5b (11%)	
					$(87:13)^{d}$		$(89:11)^{e}$		
6	1 b	Br	CH ₃ CN	4 h	2b(X=Br, 85%)		4(85%)	5a(13%)	
			_		$(87:13)^{d}$		$(87:13)^{e}$		
7	1 b	Ι	CH ₃ CN	0.5 h	\	3b (100%)		,	
8	1 c	Ι	CH ₃ CN	8 h		3c(80%)	4(83%)		

a) Reactions were carried out using 1.2 equiv. of n-Bu4NX under refluxing under nitrogen. b) Yields were determined by GC. c) S. Hara, T. Kato, H. Shimizu, and A. Suzuki, *Tetrahedron Lett.*, **26**, 1065 (1985). d) Ratio of **2**:3. e) Ratio of **4**:5.

Table 2. Reaction of (Z)-(β -Halovinyl)iodonium Salts 1 with CuX/KXa)

				Reaction	Product (yield) ^{b)}				
Entry 1		X	Solvent	time	2	3	4	5	
9	1a	Cl	CH ₂ Cl ₂	2 d	2a(X=Cl, 80%)	3a (16%)	4(73%)	5b (18%)	
					$(84:16)^{c}$		$(80:20)^{d}$		
10	1a	Br	CH ₂ Cl ₂	2 d	2a(X=Br, 73%)	3a (13%)	4 (64%)		
					(85	$(85:15)^{c}$		$(81:19)^{d}$	
11	1a	I	CH ₂ Cl ₂	3 d	(02	3a(85%)	4(83%)	,	
12	1 b	Cl	CH ₂ Cl ₂	1 d	2b (X=Cl, 72%)	3b(24%)	4 (74%)	5b (23%)	
					$(75:25)^{c}$		$(76:24)^{d}$		
13	1 b	Br	CH ₂ Cl ₂	1 d	2b (X=Br, 73%)	3b(23%)	4 (74%)		
					$(76:24)^{c}$		$(78:22)^{d}$		
14	1 b	I	CH ₂ Cl ₂	1 d	(10	3b(98%)	4(99%)	,	
	10	1				25(2070)	.(2270)		

a) Reactions were carried out using CuX(10 equiv.)/KX(10 equiv.) at room temperature under nitrogen in the dark. b) Yields were determined by GC. c) Ratio of 2:3. d) Ratio of 4:5.

salts, however, makes the reaction very sluggish. Thus, prolonged treatment of (Z)- β -bromo- 1a and (Z)- β -chlorovinyliodonium tetrafluoroborates $1b^8$) with n-Bu₄NCl or n-Bu₄NBr in dichloromethane at room temperature recovered more than 90% of the vinyliodonium salts. The major reaction observed was a ligand exchange on iodine(III) atom. However, refluxing the reaction mixture in CH₃CN led to the formation of nucleophilic substitution products; treatment of 1b with n-Bu₄NCl (1.2 equiv.) in refluxing CH₃CN under

nitrogen for 8 h gave a mixture of the vinylic substitution products, the vicinal (Z)-vinyl dichloride $2b^9$) (X = Cl; 81%) and iodobenzene (80%), and the aromatic substitution products, the β -chlorovinyl iodide (Z)-3b (19%) and chlorobenzene (15%) (Table 1, entry 4). Slightly higher ratios of vinylic to aromatic substitutions were obtained by using hexane as a solvent (entry 5), or by replacing the nucleophile from n-Bu4NC1 to n-Bu4NBr (entry 6). These nucleophilic vinylic substitutions were completely stereoselective to the limits of NMR detection at 270 MHz with retention of configuration, and the Z stereochemistry of 2b and 3b was established by the observation of a nuclear Overhauser effect (NOE) enhancement between the vinylic and allylic protons. Similar competitions between nucleophilic vinylic substitutions and aromatic substitutions were observed in the reaction of 1a with n-Bu4NX, which gives a mixture of (Z)- β -bromovinyl halides and halobenzenes. Reaction of (Z)- β -fluorovinyliodonium salt 1c with n-Bu4NI also gave (Z)- β -fluorovinyliodide 3c in high yield.

Table 1 shows that the rate of nucleophilic substitutions depends on the halide ions, and decreases in the order of n-Bu₄NI > n-Bu₄NBr > n-Bu₄NCl, reflecting the decreasing softness of halide ions. On the other hand, n-Bu₄NF does not undergo nucleophilic substitutions, and acts as a base for α -proton abstraction from 1. For instance, the reaction of 1b with n-Bu₄NF generates an (α -chloroalkylidene)carbene via α - and/or β -elimination, which undergoes intramolecular 1,5-carbon-hydrogen insertions and 1,2-migration of an α -chlorine atom. 11)

Nucleophilic substitutions of (E)- $(\beta$ -alkylvinyl)phenyliodonium tetrafluoroborates with a combination of cuprous halides and potassium halides have been shown to proceed chemoselectively at an α -vinylic carbon, yielding (E)-vinyl halides with retention of configuration;⁵⁾ however, nucleophilic vinylic substitutions of 1 with cuprous halides and potassium halides yielding 2 also compete with the nucleophilic aromatic substitutions yielding 3, as was observed in the reaction with n-Bu₄NX. These results are summarized in Table 2.

Both an addition-elimination route 12) and a ligand coupling mechanism 13) (Scheme 1; path a) on the iodine(III) of the intermediate iodonium halide 6 produced by rapid ligand exchange 14) are compatible with the stereochemical outcome observed in this nucleophilic vinylic substitution using n-Bu₄NX. An alternative ligand coupling (path b) of the halide 7 generated by pseudorotation (Ψ) on iodine(III) of 6 leads to the formation of the nucleophilic aromatic substitution products. Whatever mechanism operates in the reactions of 1 with halides, the methods developed provide an efficient route for the stereo- and regionselective synthesis of vicinal (Z)-vinyl dihalides.

References

1) This paper is dedicated to Professor Yoshifumi Maki on the occasion of his retirement from Gifu Pharmaceutical University in March 1994.

- 2) G. H. Schmid, "The Chemistry of the Carbon-Carbon Triple Bond," ed by S. Patai, John Wiley, New York (1978), Part 1, p 275.
- 3) S. Uemura, H. Miyoshi, and M. Okano, *Chem. Lett.*, **1979**, 1357; S. Hara, T. Kato, and A. Suzuki, *Synthesis*, **1983**, 1005; J. Barluenga, M. A. Rodriguez, and P. J. Campos, *J. Org. Chem.*, **55**, 3104 (1990).
- 4) M. Ochiai, K. Sumi, Y. Nagao, and E. Fujita, *Tetrahedron Lett.*, 26, 2351 (1985); M. Ochiai, K. Sumi, Y. Takaoka, M. Kunishima, Y. Nagao, M. Shiro, and E. Fujita, *Tetrahedron*, 44, 4095 (1988); N. S. Zefirov, A. S. Koz'min, T. Kasumov, K. A. Potekhin, V. D. Sorokin, V. K. Brel, E. V. Abramkin, Y. T. Struchkov, V. V. Zhdankin, and P. J. Stang, *J. Org. Chem.*, 57, 2433 (1992).
- 5) M. Ochiai, K. Oshima, and Y. Masaki, J. Am. Chem. Soc., 113, 7059 (1991).
- 6) M. Ochiai, K. Oshima, and Y. Masaki, Tetrahedron Lett., 32, 7711 (1991).
- 7) F. M. Beringer, A. Brierley, M. Drexler, M. Gindler, and C. C. Lumpkin, J. Am. Chem. Soc., 75, 2708 (1953); F. M. Beringer, S. A. Galton, and S. J. Huang, ibid., 84, 2819 (1962); O. A. Ptitsyna, M. E. Gurskii, and O. A. Reutov, J. Org. Chem. USSR, 10, 2262 (1974): Y. Yamada, K. Kashima, and M. Okawara, Bull. Chem. Soc. Jpn., 47, 3179 (1974); E. Kotali and A. Varvoglis, J. Chem. Soc., Perkin Trans. I, 1987, 2759; D. H. Barton, J.-P. Finet, C. Giannotti, and F. Halley, ibid., 1987, 241; K. Chen and G. F. Koser, J. Org. Chem., 56, 5764 (1991).
- 8) (Z)-β-Bromo- 1a and (Z)-β-chlorovinyliodonium salts 1b were prepared by stereoselective Michael-type addition of one equiv. of LiX (X = Cl and Br) to 1-decynyl(phenyl)iodonium tetrafluoroborate in acetic acid in 82% and 80% yields, respectively. Similarly, (Z)-β-fluorovinyliodonium iodide 1c was prepared by the reaction of the alkynyliodonium salt with CsF (2 equiv.) and H₂O (20 equiv.) in acetone, followed by the ligand exchange using KI, in 12% yield.
- 9) All new compounds were fully characterized by spectroscopic means and/or elemental analyses. ¹H NMR (270 MHz, CDCl₃) data are the following; **2a** (X = Cl): δ 0.88 (t, 3 H, J = 6.5 Hz), 1.2-1.7 (12 H), 2.47 (dt, 2 H, J = 1, 7.5 Hz), 6.35 (t, 1 H, J = 1 Hz). **2b** (X = Cl): δ 0.88 (t, 3 H, J = 6.5 Hz), 1.2-1.7 (12 H), 2.37 (dt, 2 H, J = 1, 7.5 Hz), 6.13 (t, 1 H, J = 1 Hz). **2b** (X = Br): δ 0.89 (t, 3 H, J = 6.5 Hz), 1.2-1.7 (12 H), 2.40 (dt, 2 H, J = 1, 7.5 Hz), 6.27 (t, 1 H, J = 1 Hz). **3b**: δ 0.88 (t, 3 H, J = 6.5 Hz), 1.2-1.7 (12 H), 2.49 (t, 2 H, J = 7.5 Hz), 6.41 (s, 1 H). **3c**: δ 0.88 (t, 3 H, J = 6.5 Hz), 1.2-1.7 (12 H), 2.33 (dt, 2 H, J = 7.5 Hz, ${}^{3}J({}^{19}F^{-1}H)$ = 16.1 Hz), 5.17 (d, 1 H, ${}^{3}J({}^{19}F^{-1}H)$ = 35.2 Hz).
- 10) Interestingly, pyrolysis of (Z)-(2-chloro-1-decenyl)phenyliodonium bromide at 140 $^{\circ}$ C for 2 min without using solvent gave a similar ratio of substitution products: **2b** (X = Br; 65%), iodobenzene (59%), **3b** (14%), and bromobenzene (12%).
- 11) M. Ochiai, K. Uemura, and Y. Masaki, J. Am. Chem. Soc., 115, 2528 (1993).
- 12) Z. Rappoport, Adv. Phys. Org. Chem., 7, 1 (1969); G. Modena, Acc. Chem. Res., 4, 73 (1971); S. I. Miller, Tetrahedron, 33, 1211 (1977); Z. Rappoport, Recl. Trav. Chim. Pays-Bas, 104, 309 (1985).
- 13) S. Oae and Y. Uchida, *Acc. Chem. Res.*, **24**, 202 (1991); N. Furukawa, S. Ogawa, K. Matsumura, and H. Fujihara, *J. Org. Chem.*, **56**, 6341 (1991).
- 14) When a dichloromethane solution of **1b** was shaken with an aqueous NaCl or NaBr solution using separatory funnel, the corresponding vinyliodonium halides were produced *via* rapid ligand exchange in high yields.

(Received February 3, 1994)